Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Dev ; 19(1): 3, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383501

RESUMO

BACKGROUND: The evolutionary origins of animal nervous systems remain contentious because we still have a limited understanding of neural development in most major animal clades. Annelids - a species-rich group with centralised nervous systems - have played central roles in hypotheses about the origins of animal nervous systems. However, most studies have focused on adults of deeply nested species in the annelid tree. Recently, Owenia fusiformis has emerged as an informative species to reconstruct ancestral traits in Annelida, given its phylogenetic position within the sister clade to all remaining annelids. METHODS: Combining immunohistochemistry of the conserved neuropeptides FVamide-lir, RYamide-lir, RGWamide-lir and MIP-lir with gene expression, we comprehensively characterise neural development from larva to adulthood in Owenia fusiformis. RESULTS: The early larval nervous system comprises a neuropeptide-rich apical organ connected through peripheral nerves to a prototroch ring and the chaetal sac. There are seven sensory neurons in the prototroch. A bilobed brain forms below the apical organ and connects to the ventral nerve cord of the developing juvenile. During metamorphosis, the brain compresses, becoming ring-shaped, and the trunk nervous system develops several longitudinal cords and segmented lateral nerves. CONCLUSIONS: Our findings reveal the formation and reorganisation of the nervous system during the life cycle of O. fusiformis, an early-branching annelid. Despite its apparent neuroanatomical simplicity, this species has a diverse peptidergic nervous system, exhibiting morphological similarities with other annelids, particularly at the larval stages. Our work supports the importance of neuropeptides in animal nervous systems and highlights how neuropeptides are differentially used throughout development.


Assuntos
Anelídeos , Neuropeptídeos , Poliquetos , Animais , Filogenia , Anelídeos/anatomia & histologia , Anelídeos/genética , Sistema Nervoso/metabolismo , Poliquetos/anatomia & histologia , Poliquetos/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Larva
2.
Evol Dev ; : e12459, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787615

RESUMO

Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.

3.
Nature ; 615(7950): 105-110, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36697830

RESUMO

Indirect development with an intermediate larva exists in all major animal lineages1, which makes larvae central to most scenarios of animal evolution2-11. Yet how larvae evolved remains disputed. Here we show that temporal shifts (that is, heterochronies) in trunk formation underpin the diversification of larvae and bilaterian life cycles. We performed chromosome-scale genome sequencing in the annelid Owenia fusiformis with transcriptomic and epigenomic profiling during the life cycles of this and two other annelids. We found that trunk development is deferred to pre-metamorphic stages in the feeding larva of O. fusiformis but starts after gastrulation in the non-feeding larva with gradual metamorphosis of Capitella teleta and the direct developing embryo of Dimorphilus gyrociliatus. Accordingly, the embryos of O. fusiformis develop first into an enlarged anterior domain that forms larval tissues and the adult head12. Notably, this also occurs in the so-called 'head larvae' of other bilaterians13-17, with which the O. fusiformis larva shows extensive transcriptomic similarities. Together, our findings suggest that the temporal decoupling of head and trunk formation, as maximally observed in head larvae, facilitated larval evolution in Bilateria. This diverges from prevailing scenarios that propose either co-option9,10 or innovation11 of gene regulatory programmes to explain larva and adult origins.


Assuntos
Genômica , Estágios do Ciclo de Vida , Poliquetos , Animais , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Poliquetos/anatomia & histologia , Poliquetos/embriologia , Poliquetos/genética , Poliquetos/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Epigenômica , Cabeça/anatomia & histologia , Cabeça/embriologia , Cabeça/crescimento & desenvolvimento
4.
Genome Biol Evol ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36099507

RESUMO

Fox genes are a large and conserved family of transcription factors involved in many key biological processes, including embryogenesis and body patterning. Although the role of Fox genes has been studied in an array of model systems, comprehensive comparative studies in Spiralia-a large clade of invertebrate animals including molluscs and annelids-are scarce but much needed to better understand the evolutionary history of this gene family. Here, we reconstruct and functionally characterize the Fox gene complement in the annelid Owenia fusiformis, a slow evolving species and member of the sister group to all remaining annelids. The genome of O. fusiformis contains at least a single ortholog for 20 of the 22 Fox gene classes that are ancestral to Bilateria, including an ortholog of the recently discovered foxT class. Temporal and spatial expression dynamics reveal a conserved role of Fox genes in gut formation, mesoderm patterning, and apical organ and cilia formation in Annelida and Spiralia. Moreover, we uncover an ancestral expansion of foxQ2 genes in Spiralia, represented by 11 paralogs in O. fusiformis. Notably, although all foxQ2 copies have apical expression in O. fusiformis, they show variable spatial domains and staggered temporal activation, which suggest cooperation and sub-functionalization among foxQ2 genes for the development of apical fates in this annelid. Altogether, our study informs the evolution and developmental roles of Fox genes in Annelida and Spiralia generally, providing the basis to explore how regulatory changes in Fox gene expression might have contributed to developmental and morphological diversification in Spiralia.


Assuntos
Anelídeos , Poliquetos , Animais , Anelídeos/genética , Padronização Corporal/genética , Invertebrados/genética , Filogenia , Fatores de Transcrição/genética
5.
Nat Commun ; 13(1): 2286, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484126

RESUMO

Animal development is classified as conditional or autonomous based on whether cell fates are specified through inductive signals or maternal determinants, respectively. Yet how these two major developmental modes evolved remains unclear. During spiral cleavage-a stereotypic embryogenesis ancestral to 15 invertebrate groups, including molluscs and annelids-most lineages specify cell fates conditionally, while some define the primary axial fates autonomously. To identify the mechanisms driving this change, we study Owenia fusiformis, an early-branching, conditional annelid. In Owenia, ERK1/2-mediated FGF receptor signalling specifies the endomesodermal progenitor. This cell likely acts as an organiser, inducing mesodermal and posterodorsal fates in neighbouring cells and repressing anteriorising signals. The organising role of ERK1/2 in Owenia is shared with molluscs, but not with autonomous annelids. Together, these findings suggest that conditional specification of an ERK1/2+ embryonic organiser is ancestral in spiral cleavage and was repeatedly lost in annelid lineages with autonomous development.


Assuntos
Anelídeos , Poliquetos , Animais , Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Mesoderma , Moluscos
7.
Nat Ecol Evol ; 5(2): 231-242, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199869

RESUMO

The causes and consequences of genome reduction in animals are unclear because our understanding of this process mostly relies on lineages with often exceptionally high rates of evolution. Here, we decode the compact 73.8-megabase genome of Dimorphilus gyrociliatus, a meiobenthic segmented worm. The D. gyrociliatus genome retains traits classically associated with larger and slower-evolving genomes, such as an ordered, intact Hox cluster, a generally conserved developmental toolkit and traces of ancestral bilaterian linkage. Unlike some other animals with small genomes, the analysis of the D. gyrociliatus epigenome revealed canonical features of genome regulation, excluding the presence of operons and trans-splicing. Instead, the gene-dense D. gyrociliatus genome presents a divergent Myc pathway, a key physiological regulator of growth, proliferation and genome stability in animals. Altogether, our results uncover a conservative route to genome compaction in annelids, reminiscent of that observed in the vertebrate Takifugu rubripes.


Assuntos
Anelídeos , Evolução Molecular , Animais , Anelídeos/genética , Ligação Genética , Genoma , Takifugu/genética
8.
J Morphol ; 280(11): 1628-1650, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31487090

RESUMO

Sipuncula is a clade of unsegmented marine worms that are currently placed among the basal radiation of conspicuously segmented Annelida. Their new location provides a unique opportunity to reinvestigate the evolution and development of segmented body plans. Neural segmentation is clearly evident during ganglionic ventral nerve cord (VNC) formation across Sedentaria and Errantia, which includes the majority of annelids. However, recent studies show that some annelid taxa outside of Sedentaria and Errantia have a medullary cord, without ganglia, as adults. Importantly, neural development in these taxa is understudied and interpretation can vary widely. For example, reports in sipunculans range from no evidence of segmentation to vestigial segmentation as inferred from a few pairs of serially repeated neuronal cell bodies along the VNC. We investigated patterns of pan-neuronal, neuronal subtype, and axonal markers using immunohistochemistry and whole mount in situ hybridization (WMISH) during neural development in an indirect-developing sipunculan, Themiste lageniformis. Confocal imaging revealed two clusters of 5HT+ neurons, two pairs of FMRF+ neurons, and Tubulin+ peripheral neurites that appear to be serially positioned along the VNC, similar to other sipunculans, to other annelids, and to spiralian taxa outside of Annelida. WMISH of a synaptotagmin1 ortholog in T. lageniformis (Tl-syt1) showed expression throughout the centralized nervous system (CNS), including the VNC where it appears to correlate with mature 5HT+ and FMRF+ neurons. An ortholog of elav1 (Tl-elav1) showed expression in differentiated neurons of the CNS with continuous expression in the VNC, supporting evidence of a medullary cord, and refuting evidence of ontogenetic segmentation during formation of the nervous system. Thus, we conclude that sipunculans do not exhibit any signs of morphological segmentation during development.


Assuntos
Larva/crescimento & desenvolvimento , Sistema Nervoso/crescimento & desenvolvimento , Neurogênese , Poliquetos/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Larva/anatomia & histologia , Microscopia Confocal , Sistema Nervoso/anatomia & histologia , Neurônios , Poliquetos/anatomia & histologia , Poliquetos/genética
9.
Dev Biol ; 431(2): 134-144, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28943340

RESUMO

In the deuterostomes and ecdysozoans that have been studied (e.g. chordates and insects), neural fate specification relies on signaling from surrounding cells. However, very little is known about mechanisms of neural specification in the third major bilaterian clade, spiralians. Using blastomere isolation in the annelid Capitella teleta, a spiralian, we studied to what extent extrinsic versus intrinsic signals are involved in early neural specification of the brain and ventral nerve cord. For the first time in any bilaterian, we found that brain neural ectoderm is autonomously specified. This occurs in the daughters of first-quartet micromeres, which also generate anterior neural ectoderm in other spiralians. In contrast, isolation of the animal cap, including the 2d micromere, which makes the trunk ectoderm and ventral nerve cord, blocked ventral nerve cord formation. When the animal cap was isolated with the 2D macromere, the resulting partial larvae had a ventral nerve cord. These data suggest that extrinsic signals from second-quartet macromeres or their daughters, which form mesoderm and endoderm, are required for nerve cord specification in C. teleta and that the 2D macromere or its daughters are sufficient to provide the inductive signal. We propose that autonomous specification of anterior neural ectoderm evolved in spiralians in order to enable them to quickly respond to environmental cues encountered by swimming larvae in the water column. In contrast, a variety of signaling pathways could have been co-opted to conditionally specify the nerve cord. This flexibility of nerve cord development may be linked to the large diversity of trunk nervous systems present in Spiralia.


Assuntos
Evolução Biológica , Encéfalo/embriologia , Poliquetos/embriologia , Animais , Padronização Corporal , Encéfalo/citologia , Ectoderma/embriologia , Embrião não Mamífero/citologia , Larva/citologia , Larva/crescimento & desenvolvimento , Modelos Biológicos , Poliquetos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...